
Principles

Description

Provides information and data to educate software development professionals on the concept,
applicability, and value of software security principles. It will also contain a set of key secure software
principles to assist software development professionals in analyzing and creating their software
architectures from a security perspective and in gaining a greater understanding of the key underlying
concepts and patterns that, depending on how they are addressed, can make software either more or less
secure.

Overview Articles

Name Version Erstellungsdatum Abstract

Design Principles 07.06.06 15:19:27 As the recognition of security as
a key dimension of high-quality
software development has
grown, the understanding of and
ability to craft secure software
has become a more common
expectation of software
developers. The challenge is in
the learning curve. Most
developers don't have the benefit
of years and years of lessons
learned that an expert in software
security can call on. In an effort
to bridge this gap, the Principles
content area, along with the
Guidelines and Coding Rules
content areas, presents a set of
practices derived from real-world
experience that can help guide
software developers in building
more secure software.

Most Recently Updated Articles [Ordered by Last Modified Date]

Name Version Erstellungsdatum Abstract

Separation of Privilege 07.06.06 15:27:53 A system should ensure that
multiple conditions are met
before granting permissions to an
object. Checking access on only
one condition may not be
adequate for strong security. If
an attacker is able to obtain one
privilege but not a second, he or

Principles 1
ID: 79 | Version: 1 | Datum: 01.03.06 11:16:23

she may not be able to launch a
successful attack. If a software
system largely consists of one
component, the idea of having
multiple checks to access
different components cannot be
implemented.
Compartmentalizing software
into separate components that
require multiple checks for
access can inhibit an attack or
potentially prevent an attacker
from taking over an entire
system.

Securing the Weakest Link 07.06.06 15:27:11 Attackers are more likely to
attack a weak spot in a software
system than to penetrate a
heavily fortified component. For
example, some cryptographic
algorithms can take many years
to break, so attackers are not
likely to attack encrypted
information communicated in a
network. Instead, the endpoints
of communication (e.g., servers)
may be much easier to attack.
Knowing when the weak spots of
a software application have been
fortified can indicate to a
software vendor whether the
application is secure enough to
be released.

Reluctance to Trust 07.06.06 15:26:19 Developers should assume that
the environment in which their
system resides is insecure. Trust,
whether it is in external systems,
code, people, etc., should always
be closely held and never loosely
given. When building an
application, software engineers
should anticipate malformed
input from unknown users. Even
if users are known, they are
susceptible to social engineering
attacks, making them potential
threats to a system. Also, no
system is one hundred percent
secure, so the interface between
two systems should be secured.
Minimizing the trust in other
systems can increase the security
of your application.

Principles 2
ID: 79 | Version: 1 | Datum: 01.03.06 11:16:23

Psychological Acceptability 07.06.06 15:25:37 Accessibility to resources should
not be inhibited by security
mechanisms. If security
mechanisms hinder the usability
or accessibility of resources, then
users may opt to turn off those
mechanisms. Where possible,
security mechanisms should be
transparent to the users of the
system or at most introduce
minimal obstruction. Security
mechanisms should be user
friendly to facilitate their use and
understanding in a software
application.

Promoting Privacy 07.06.06 15:24:34 Protecting software systems from
attackers that may obtain private
information is an important part
of software security. If an
attacker breaks into a software
system and steals private
information about a vendor's
customers, then their customers
may lose their confidence in that
software system. Attackers may
also target sensitive system
information that can supply an
attacker with the details needed
to attack that system. Preventing
attackers from accessing private
information or obscuring that
information can alleviate the risk
of information leakage.

All Articles [Ordered by Title]

Name Version Erstellungsdatum Abstract

Complete Mediation 07.06.06 15:13:57 A software system that requires
access checks to an object each
time a subject requests access,
especially for security-critical
objects, decreases the chances of
mistakenly giving elevated
permissions to that subject. A
system that checks the subject's
permissions to an object only
once can invite attackers to
exploit that system. If the access
control rights of a subject are
decreased after the first time the

Principles 3
ID: 79 | Version: 1 | Datum: 01.03.06 11:16:23

rights are granted and the system
does not check the next access to
that object, then a permissions
violation can occur. Caching
permissions can increase the
performance of a system, but at
the cost of allowing secured
objects to be accessed.

Defense in Depth 07.06.06 15:18:12 Layering security defenses in an
application can reduce the
chance of a successful attack.
Incorporating redundant security
mechanisms requires an attacker
to circumvent each mechanism to
gain access to a digital asset. For
example, a software system with
authentication checks may
prevent an attacker that has
subverted a firewall. Defending
an application with multiple
layers can prevent a single point
of failure that compromises the
security of the application.

Design Principles 07.06.06 15:19:27 As the recognition of security as
a key dimension of high-quality
software development has
grown, the understanding of and
ability to craft secure software
has become a more common
expectation of software
developers. The challenge is in
the learning curve. Most
developers don't have the benefit
of years and years of lessons
learned that an expert in software
security can call on. In an effort
to bridge this gap, the Principles
content area, along with the
Guidelines and Coding Rules
content areas, presents a set of
practices derived from real-world
experience that can help guide
software developers in building
more secure software.

Economy of Mechanism 07.06.06 15:20:24 One factor in evaluating a
system's security is its
complexity. If the design,
implementation, or security
mechanisms are highly complex,
then the likelihood of security

Principles 4
ID: 79 | Version: 1 | Datum: 01.03.06 11:16:23

vulnerabilities increases. Subtle
problems in complex systems
may be difficult to find,
especially in copious amounts of
code. For instance, analyzing the
source code that is responsible
for the normal execution of a
functionality can be a difficult
task, but checking for alternate
behaviors in the remaining code
that can achieve the same
functionality can be even more
difficult. One strategy for
simplifying code is the use of
choke points, where shared
functionality reduces the amount
of source code required for an
operation. Simplifying design or
code is not always easy, but
developers should strive for
implementing simpler systems
when possible.

Failing Securely 07.06.06 15:21:31 When a system fails, it should do
so securely. This typically
involves several things: secure
defaults (default is to deny
access); on failure undo changes
and restore to a secure state;
always check return values for
failure; and in conditional
code/filters make sure that there
is a default case that does the
right thing. The confidentiality
and integrity of a system should
remain even though availability
has been lost. Attackers must not
be permitted to gain access rights
to privileged objects during a
failure that are normally
inaccessible. Upon failing, a
system that reveals sensitive
information about the failure to
potential attackers could supply
additional knowledge for
creating an attack. Determine
what may occur when a system
fails and be sure it does not
threaten the system.

Least Common Mechanism 07.06.06 15:22:08 Avoid having multiple subjects
sharing mechanisms to grant
access to a resource. For
example, serving an application

Principles 5
ID: 79 | Version: 1 | Datum: 01.03.06 11:16:23

on the Internet allows both
attackers and users to gain access
to the application. Sensitive
information can potentially be
shared between the subjects via
the mechanism. A different
mechanism (or instantiation of a
mechanism) for each subject or
class of subjects can provide
flexibility of access control
among various users and prevent
potential security violations that
would otherwise occur if only
one mechanism was
implemented.

Least Privilege 07.06.06 15:22:56 Only the minimum necessary
rights should be assigned to a
subject that requests access to a
resource and should be in effect
for the shortest duration
necessary (remember to
relinquish privileges). Granting
permissions to a user beyond the
scope of the necessary rights of
an action can allow that user to
obtain or change information in
unwanted ways. Therefore,
careful delegation of access
rights can limit attackers from
damaging a system.

Never Assuming that Your
Secrets Are Safe

07.06.06 15:23:52 Relying on an obscure design or
implementation does not
guarantee that a system is
secured. You should always
assume that an attacker can
obtain enough information about
your system to launch an attack.
Tools such as decompilers and
disassemblers allow attackers to
obtain sensitive information that
may be stored in binary files.
Also, inside attacks, which may
be accidental or malicious, can
lead to security exploits. Using
real protection mechanisms to
secure sensitive information
should be the ultimate means of
protecting your secrets.

Promoting Privacy 07.06.06 15:24:34 Protecting software systems from
attackers that may obtain private

Principles 6
ID: 79 | Version: 1 | Datum: 01.03.06 11:16:23

information is an important part
of software security. If an
attacker breaks into a software
system and steals private
information about a vendor's
customers, then their customers
may lose their confidence in that
software system. Attackers may
also target sensitive system
information that can supply an
attacker with the details needed
to attack that system. Preventing
attackers from accessing private
information or obscuring that
information can alleviate the risk
of information leakage.

Psychological Acceptability 07.06.06 15:25:37 Accessibility to resources should
not be inhibited by security
mechanisms. If security
mechanisms hinder the usability
or accessibility of resources, then
users may opt to turn off those
mechanisms. Where possible,
security mechanisms should be
transparent to the users of the
system or at most introduce
minimal obstruction. Security
mechanisms should be user
friendly to facilitate their use and
understanding in a software
application.

Reluctance to Trust 07.06.06 15:26:19 Developers should assume that
the environment in which their
system resides is insecure. Trust,
whether it is in external systems,
code, people, etc., should always
be closely held and never loosely
given. When building an
application, software engineers
should anticipate malformed
input from unknown users. Even
if users are known, they are
susceptible to social engineering
attacks, making them potential
threats to a system. Also, no
system is one hundred percent
secure, so the interface between
two systems should be secured.
Minimizing the trust in other
systems can increase the security
of your application.

Principles 7
ID: 79 | Version: 1 | Datum: 01.03.06 11:16:23

Securing the Weakest Link 07.06.06 15:27:11 Attackers are more likely to
attack a weak spot in a software
system than to penetrate a
heavily fortified component. For
example, some cryptographic
algorithms can take many years
to break, so attackers are not
likely to attack encrypted
information communicated in a
network. Instead, the endpoints
of communication (e.g., servers)
may be much easier to attack.
Knowing when the weak spots of
a software application have been
fortified can indicate to a
software vendor whether the
application is secure enough to
be released.

Separation of Privilege 07.06.06 15:27:53 A system should ensure that
multiple conditions are met
before granting permissions to an
object. Checking access on only
one condition may not be
adequate for strong security. If
an attacker is able to obtain one
privilege but not a second, he or
she may not be able to launch a
successful attack. If a software
system largely consists of one
component, the idea of having
multiple checks to access
different components cannot be
implemented.
Compartmentalizing software
into separate components that
require multiple checks for
access can inhibit an attack or
potentially prevent an attacker
from taking over an entire
system.

Felder

Name Wert

Categories knowledge

Principles 8
ID: 79 | Version: 1 | Datum: 01.03.06 11:16:23

